Mistakes on Real Ear Measures Clinicians Often Make

Michael Valente

Washington University in St. Louis School of Medicane

There are two national guidelines (ASHA, 1998; AAA 2006) stating the need to use **REM to verify the performance** of hearing aids in order to achieve best practice

Kirkwood Hear J (2010)								
	"Ho	w often do ye	ou do	REM?				
	0%	Occasionally	<50%	50%	Most of Time	Almost Always		
Audiologist	29.9	19.5	13.2	7.1	11.5	19.2		
HIS	27.0	21.1	8.9	8.9	13.0	21.1		

Washington University in St.Louis SCHOOL OF MEMORYE

Mueller and Picou Hear J (2010)									
"How often do you do REM?									
	Seldom or Never	Sometimes	50%	Usually	Almost Always				
Audiologist and HIS	34%	18%	6%	12%	30%				
BARNES Childre s Louis Hosting Childre s Constant St. Louis Science of Mesington University in St. Louis									

Mueller and Picou (2010) "How often do you use REM to verify and adjust on the day of the fitting"

Nearly 50% who have REM don't use it!

There is overwhelming evidence that manufacturer "first-fit" under amplifies the needs of patients and the reduced amplification occurs most often in the high frequencies which is most often needed to improve speech recognition.

Washington University in St.Louis SCHOOL OF MEDICANE

First-Fit Does Not Reach Target

- Swan and Gatehouse (1995): in 76% of 319 ears the measured response differed from predicted response @ 250-4000 Hz.
- Hawkins and Cook (2003): as much as a 20 dB difference
- Bentler (2004): as much as a 15 dB difference
- Aarts and Caffee (2005): measured REAR less than predicted REAR in all 41 participants for two audiometric configurations and two input levels.
- Bretz (2006): as much as 20 dB difference
- Aazh and Moore (2007): only 36% of 42 ears were within 20 dB of NAL-NL1
- Byrne (1992): a difference of as little as 3-4 dB were judged to be significantly different

Typical "First-Fit" Real Ear Insertion Gain (REIG) w/o Verification

First-Fit

REIG With Verification

Abrams et al (2012)

- First-Fit
- REM using NAL-NL1
- APHAB
- N = 22 experienced HA users
- Cross-over (randomized block) design
- Blinded to method
- EC, RV and BN benefit scores for REM were significantly higher than First-Fit
- 15 subjects preferred REM and 7 preferred First-Fit

Washington University in St.Louis School of Metricine

Mueller and Picou (2010)

- Consumer Reports (2009): 66% of HA's not fitted correctly and audiologists and HIS do not routinely conduct REM.
- Palmer (2009): failure to use REM is unethical based on AAA Code of Ethics to "maintain high standards of professional competence."

 Kochkin (2010): HA satisfaction related to testing conducted @ the fitting and more testing leads to greater satisfaction and REM is one of the tests that impact results

SCHOOL OF MEDICINE

Mueller and Picou (2010)

• For those who do use REM:

- REAR: used by 78%
- Verify REAR 50-65-80 is within the residual dynamic range. Threshold is converted to dB SPL from the audiogram (dB HL) using average transformations (Real Ear to Dial Difference (REDD).
- Loudness Discomfort Level_{dB SPL} (upper) segment of the residual dynamic range) based on Pascoe (1988) + average REDD
- REIG: used by 22%
- REUG: 9% use "average" and 91% use "individual" BARNES

Washington University in St. Louis CHOCL OF MEDICINE

Frye equipment creates multiple REAR targets on one screen, but not for REIG and there are no targets for REAG

BAR

NAL-NL2 REIG

NAL-NL2 REAG

Impact of REUG

Washington University in St.Louis SCHOOL OF MEDICANE

NAL-NL2

- Contraction	HHE PHER								
Trat	isducer Typ)Supra-aura)Insert earr)Insert earr)Loudspeak	e al headpho ohone + F ohone + O cer	one oam tip wn mold)	Input Q OdB OdB OdB OdB OdB	uantity HL SPL in ca SPL in ca	canel ad field	
Supr	a-aural hea	dphone - 0	dB HL	1.5647	2647	3647	aletta	6447	al-Li-
AC	:	0	ANIN		0	51512	1014	-OK12	ONT
BC					1				
	de-mo	Use Bo	one Cond	uction Valu	yes	STARL D	AT LAND	ALC: NO.	and the
	O Predi	cted ured		E Roferance	Coupler:	Foam HA1	Tip ()	Own Mole	4
REC	O Predia Meas -0.5 D for Hearin	cted ured 2.3 ng Aid	4.2	E Inderance 6.9	Coupler: 8.0	 Foam HA1 10.7 	Tip () 14.3	Own Mole HA2 13.4	1
REC	O Predi O Meas -0.5 D for Hearin O Predi O Meas	ted ured 2.3 ng Aid cted ured with	4.2 Own Mok	6.9 d	arpiece: Coupler: 8.0	Foam HA1 10.7 Rofe HA1	Tip () 14.3	Own Mole HA2 13.4 pler HA2	i 10.5
REC	O for Hack O Predia Meas -0.5 D for Hearin O Predia Meas -1.8	rooos cted 2.3 ng Aid cted ured with 3.6	4.2 Own Mok 6.8	E 6.9 d 8.9	arpiece: 8.0	 Foam HA1 10.7 Rafe HA1 9.0 	Tip () 14.3	Own Mole HA2 13.4 Pier HA2 10.7	i 10.5 8.6
REC	O Predic Predic Predic Predic Predic Predic R O Predic Predic Pr	ted	4.2 Own Mok 6.8	E 6.9 d 8.9	arpiece: 	 Foam HA1 10.7 Rofe HA1 9.0 	Tip () 14.3	Own Mole HA2 13.4 Dier HA2 10.7	1 10.5 8.6
REC	Predic Predic Predic R Predic Predic Predic OPredic O.6	ted 0.4	4.2 Own Mok 6.8 O Measu 0.8	E 6.9 d 8.9 wred 4.9	arpiece: 8.0 8.8 8.8 12.4	 Foam HA1 10.7 Rafe HA1 9.0 14.3 	Tip () 14.3 10.7 10.7	Own Mole HA2 13.4 pler HA2 10.7	1 10.5 8.6
REC	O Predic Meas -0.5 D for Hearin O Predic Meas -1.8 R O Predic 0.6 D O Predict	ted 0.4	4.2 Own Mok 6.8 O Measu 0.8	E 6.9 d 8.9 red 4.9	arpiece: 3.0 3.8 3.8 12.4	 Foam HA1 10.7 Rafe HA1 9.0 14.3 	Tip () 14.3 10.7 12.2	Own Mole HA2 13.4 NH2 10.7 4.3	i 10.5 8.6 1.1

Washington University in St.Louis School of Memory

REUG DSL i/o and NAL-NL-1

Frequency	DLS i/o	NAL-NL1 /Frye	Verifit	
250	2.2	0.5	1.0	
500	5.0	0.4	2.0	
1000	6.4	0.8	3.0	
1500	8.8	4.9	5.0	
2000	15	12.4	12.0	
3000	19.8	14.3	13.0	
4000	18.3	12.2	14.0	
6000	14.4	4.3	7.0	
8000	-	1.1	-	
ARNES	Childre	s		Washington University in St.Lo School of Methanie

REIG Using Average REUG

	_		Prob	e Left	REAG3		-	
	Freq ⊔→	baın ⊿D	Freq U-	baın ⊿D	Freq	եain եթ	Freq U ₄	եձւո ՎԵ
	п <u>с</u>	UD	Πζ	ЦD	ΠΖ	UD	П	UD
			2100	32,4	4100	29,2	6100	24.3
	200	3.4	2200	33,5	4200	29,1	6200	23.4
	300	3.2	2300	34.1	4300	29.0	6300	22.2
	400	3.5	2400	34.3	4400	28.9	6400	20.7
	500	3.6	2500	34.4	4500	28,1	6500	19,2
	600	5.0	2600	34.1	4600	27.9	6600	17.3
	700	5.7	2700	33.8	4700	27,2	6700	14.8
	800	6.8	2800	33.0	4800	26.7	6800	11.9
	900	11.2	2900	33.6	4900	25,9	6900	9,1
	1000	16.5	3000	32,6	5000	25,2	7000	5.9
	1100	21.9	3100	30.4	5100	24.8	7100	3₊9
	1200	23.3	3200	29.4	5200	24.7	7200	1.9
	1300	22,4	3300	28,5	5300	24.7	7300	0.5
	1400	22.2	3400	28.7	5400	25.1	7400	1.4
	1500	23.3	3500	28.1	5500	25.1	7500	2.0
	1600	27.1	3600	28.0	5600	25.3	7600	3.5
	1700	28.7	3700	28.3	5700	25.6	7700	5.9
	1800	29.4	3800	29,3	5800	25,5	7800	6.7
	1900	29,6	3900	29.3	5900	25.3	7900	7.9
	2000	31,2	4000	29,6	6000	24.6	8000	10,2
BARNES		Chi	dren is			1	>	Wash SCHOOL

Washington University in St. Louis School of Memory

REIG Using Individual REUG

			Prob	e Left	REAG3			
	Freq	Gain	Freq	Gain	Freq	Gain	Freq	Gain
	Hz	dB	Hz	dB	Hz	dB	Hz	dB
			2100	30,6	4100	28,4	6100	20,2
	200	1.4	2200	32.4	4200	29.0	6200	18.7
	300	1.5	2300	34.4	4300	28,2	6300	18.1
	400	1.8	2400	37.5	4400	27.0	6400	18.0
	500	2.8	2500	37.4	4500	26.6	6500	17.3
	600	3.7	2600	38.3	4600	26.5	6600	15.5
	700	4.4	2700	40.0	4700	26.5	6700	13.7
	800	6.7	2800	40.3	4800	25.4	6800	12,2
	900	13.0	2900	37.5	4900	23.9	6900	10.7
	1000	18.8	3000	36.4	5000	22,8	7000	9.7
	1100	23.7	3100	34.9	5100	21,9	7100	7.7
	1200	25.3	3200	34.1	5200	21,3	7200	6.7
	1300	27.4	3300	31.5	5300	21.0	7300	6.0
	1400	26.3	3400	29.7	5400	20.7	7400	5.7
	1500	25.9	3500	28.9	5500	20.5	7500	5.9
	1600	26.0	3600	29.0	5600	20,2	7600	6.6
	1700	28.1	3700	29.3	5700	20.2	7700	7.0
	1800	28.1	3800	28.3	5800	20.2	7800	7.7
	1900	27.4	3900	27.7	5900	21.3	7900	7.9
	2000	29,9	4000	27.5	6000	21.0	8000	8.2
BARNE	H	C	hildre/	Ìs		<		

Washington University in St. Louis School of Medicane

NAL-NL2 REIG

NAL-NL2 REAG

Washington University in St.Louis SCHOOL OF MEDICANE

Impact of Bilateral <u>and</u> Power (Channel) Summation

Washington University in St. Louis SCHOOL OF MEDICANE

An Analogy to Help Explain Channel/Power **Summation** 65 dB SPL **Amplifier** SLM BARNE Childre/ Vs Washington University in St. Louis SCHOOL OF MEDICINE

Now, add 11 loudspeakers and keep the selected input level to each loudspeaker the same

Washington University in St.Louis SCHOOL OF MEDICANE

Example of Correcting for Bilateral and Channel Summation in a Hearing Aid Fit Using the Frye 7000 or 8000

Washington University in St.Louis School of Medicane

Entered audiogram for fitting bilateral hearing aids with 20 channels of signal processing.

As a sidebar....notice the predicted LDL's in dB HL.

Washington University in St. Louis School of Meescene

Frye default is <u>monaural</u> and <u>1 channel</u>, but audiologists typically do not "see" this.

Correct for bilateral summation

REIG for bilateral summation

Washington University in St. Louis SCHOOL OF MEDICATE

Correct for channel summation

Resulting REIG for bilateral and channel summation

Correction for <u>REAR</u> measures

Washington University in St. Louis SCHOOL OF MEDICANE

First, Need to Know a Little About the Real Ear to Dial Difference (REDD)

Washington University in St. Louis SCHOOL OF MEDICANE

When completing REAR measures you may not be aware....

As mentioned earlier, when you enter the audiogram in dB HL, the REM software will convert the threshold (dB HL) to dB (SPL) by <u>adding</u> the <u>average</u> REDD from ANSI S3.6-1989 to calculate the predicted threshold in dB SPL:

		19		15.5
		12		13
	1000	9	6000	13
	2000	15	8000	14
éwnishr a	(hildre is		Washington Universi

vin St.Louis

Keller and Valente (2006)

Washington University in St. Louis SCHOOL OF MEDICINE

		<u>dB (HL)</u>		<u>dB (SPL)</u>				
	% below	% within % above		% below	% within	% above		
	5 dB	+/-5 dB	+5 dB	5 dB	+/-5 dB	+5 dB		
500	0.26	0.45	0.29	0.25	0.45	0.30		
1000	0.20	0.60	0.20	0.23	0.53	0.24		
2000	0.22	0.56	0.22	0.27	0.44	0.29		
4000	0.18	0.62	0.20	0.27	0.50	0.23		
Grand	0.22	0.56	0.23	0.26	0.48	0.26		

Elberling (1999) reported that measured and predicted LDL would be within +/- 5 dB in 70% of the cases.

BARNE

Washington University in St. Louis SCHOOL OF MEDICINE

Next, the software <u>predicts</u> LDL in dB HL from Pascoe (1988) and adds the <u>average</u> REDD to convert the LDL in dB HL to LDL in dB SPL

Washington University in St.Louis SCHOOL OF MEDICANE

TOO LOUD!) _R [[9
VERY LOUD	- E -	8
LOUD		7
OK (LOUDER)		6
OKI		5
OK (SOFTER)	N [4
SOFT) ¥ E [[3
VERY SOFT	- t - 1	2
TOO SOFTI] ° [[1
NOTHING	-WHITE-	0
BOINING	-Amut-	0

Kashington University in St.Louis School of Medicune

Frye 6500, 7000 and 8000

		LDL	. 🕂	REDD = LI	DL dB s
HTL dBHL	UCL HL	HTL dBHL	UCL HL	FREQ (Hz)	dB
0	97	65	114	250	19.0
10	99	70	115	500	12.0
15	98	80	120	750	10.5
20	97	85	120	1000	9.0
25	101	90	124	1500	12.0
30	102	100	130	2000	15.0
40	103	105	133	3000	15.5
45	105	110	134	4000	13.0
50	107	115	137	6000	13.0
55 60	108	120	140	8000	14.0

Childre/ Vs

Washington University in St.Louis SCHOOL OF MEDICANE

HL	250	500	1000	1500	2000	3000	4000	6000	8000	Pascoe (1988)	1. Pascoe (1988)
0	116	109	106	109	112	113	110	110	111	97	dB HL to LDL
5	118	111	108	111	114	115	112	112	113	99	(last column to
10	118	111	108	111	114	115	112	112	113	99	right)
15	117	110	107	110	113	114	111	111	112	98	
20	116	109	106	109	112	113	110	110	111	97	2. HL to SPL
25	120	113	110	113	116	117	114	114	115	101	conversion
30	121	114	111	114	117	118	115	115	116	102	(ANSI S3.6-1989
35	120	113	110	113	116	117	114	114	115	101	Table G-1) in
40	122	115	112	115	118	119	116	116	117	103	
45	124	117	114	117	120	121	118	118	119	105	each cenj
50	126	119	116	119	122	123	120	120	121	107	
55	127	120	117	120	123	124	121	121	122	108	250 19
60	129	122	119	122	125	126	123	123	124	110	500 12
65	133	126	123	126	129	130	127	127	128	114	1000 9
70	134	127	124	127	130	131	128	128	129	115	1500 12
75	136	129	126	129	132	133	130	130	131	117	2000 15
80	139	132	129	132	135	136	133	133	134	120	3000 15.5
85	139	132	129	132	135	136	133	133	134	120	10.0 12
90	143	136	133	136	139	140	137	137	138	124	
95	149	142	139	142	145	146	143	143	144	130	13
100	146	139	136	139	142	143	140	140	141	127	8000 14
105	152	145	142	145	148	149	146	146	147	133	=================
110	153	146	143	146	149	150	147	147	148	134	
115	156	149	146	149	152	153	150	150	151	137	
120	159	152	149	152	155	156	153	153	154	140	SCHOOL OF MEDICINE

Predicted RESR₉₀ (Dillon, 2000)

ATT	250	500	11-	01-	(h
and	200	300	IK	ZK	4K
0	85	90	90	90	87
5	86	91	91	92	89
10	87	92	93	93	90
15	89	94	94	94	91
20	90	95	95	96	92
25	91	96	97	97	93
30	92	98	98	99	95
35	94	99	100	100	96
40	95	101	101	101	97
45	96	102	103	103	98
50	97	103	104	104	99
55	99	105	106	105	101
60	100	106	108	107	102
65	103	110	110	109	105
70	107	113	113	112	107
75	111	116	115	114	110
80	114	120	118	117	112
85	118	123	121	120	115
90	121	126	123	122	117
95	125	130	126	125	120
100	128	133	129	127	122
105	132	136	131	130	125
110	135	140	134	133	127
115	139	143	136	135	130
20	143	146	139	138	132
10	143		138		

Childre/ is

BARNES EMISH

Washington University in St.Louis SCHOOL OF MEMORINE

Bentler and Cooley (2001)

How does one measure the individual REDD?

Washington University in St.Louis SCHOOL OF MEDICANE

Measuring REDD

Audiometer dial is 70 dB HL

Barnesjewish

Screen to measure REDD

FONIX TYPE 7000 ANALYZER Setup Menu

Microphone Calibration

Coupler Microphone

Reference Microphone

Probe Microphone

82.1 dB

PT'O GR

Washington University in St. Louis SCHOOL OF MEDICINE

rariouarou. (a	iB SPL): 90	94	110	*114*			
Mic	Model	Serial	F	RMS	Fixup		
Chamber Coupler	M1958E	005134			2.05		
Probe Left			_				
*Probe * Ref	M767 M767	005263 005263	10	07.27	2,92 2,27		
Durka Durka							
Probe Kight	M7C7	005255			5 41		
Frobe Kight Probe Ref Jse the LEFT-	M767 M767 RIGHT arrows	005255 005255 to select	the app	propriat	5.41 2.55 e calibrator amp calibrate	litude.	
Probe Probe Ref Jse the LEFT- Jse the UP-DO Press START t Press STOP to	M767 M767 RIGHT arrows WN arrows to WN arrows to Stop a calib	005255 005255 to select select the calibratic bration in	the app e microp proces:	propriat phone to s.	5.41 2.55 e calibrator amp calibrate.	litude.	

Error encou If setup is

	F1 Settings Selection	F2 Find Modules	F3 Set Time/Date	F4 Meas Earph in Coupler	F5 Save Cham Level	F6 Calibrate Microphones	F7 Load Setup Defaults	F8 Save Setup Defaults	SETUP 1 2013-09-30 6:41:01AM	
B	ARNESUJEW Hespile	AISH"	Ch	ildre/is		C		SCHOO	nington University in Nor Metricine	n St. Louis

Washington University in St. Louis SCHOOL OF MEDICINE

Table used to document REDD in SPL

Washington University in St.Louis SCHOOL OF MEDICINE

Using the Dynamic Range of the Patient as the Target

Washington University in St. Louis SCHOOL OF MEDICANE

Press F2 from opening screen to open Real Ear Navigation Screen

Press F1 to enter audiogram and LDL in dB HL. If individually measured LDL are not entered the software will <u>predict</u> LDL based on Pascoe (1988)

Press a function key to go to that screen. Press FXIT to return to Opening Screen.

	F1 Audiogram	F2 Target	F3 Insertion Gain	F4 Real Ear SPL	F5 Visible Speech	F6	F7	F8	SETUP 1 2010-11-03 11:50:089
Ba	RNE <mark>X</mark> EVVIS	3 -1 1	Child	tre/ is	P5 Visible Speech	18 <		Wash Sciegos	ington University in St. Louis or Memoine

Audio + measured LDL of left ear in dB HL

Press a function key to go to that screen. Press EXIT to return to Opening Screen.

Frequency	ANSI S3.6- 1989	My REDD (Left)	Difference	
250	19	13	-6	
500	12	15	+3	
1000	9	12	+3	
2000	15	16	+1	
3000	15.5	12	-3.5	
4000	13	2	-11	
6000	13	10	-3	
8000	14	12	-2	

Washington University in St. Louis School of Memory

Press [Menu] and scroll down to REDD

BARNE

Press Right Arrow to "Custom"

BARNE

Final correction

BAR

Final Thoughts-1

- Unfortunately, in the US, I do not see widespread use of REM unless financial penalties are adopted as occurs in some other countries (e.g., Canada, Brazil, Australia).
- The impact, if any, of using average versus individual REUG for REIG measures has not been investigated.
- For the most accurate REAR measures, it intuitively makes greater sense to use the individual's DR as the target and a target based on average transformations.

Washington University in St.Louis SCHOOL OF MEDICINE

Final Thoughts-2

- Unfortunately, in the US, I do not see widespread use of REM unless financial penalties are adopted as occurs in some other countries (e.g., Canada, Brazil, Australia).
- The impact, if any, of using average versus individual REUG for REIG measures have not be investigated.
- For the most accurate REAR measures, it intuitively makes greater sense to use the individual's DR as the target and a target based on average transformations.

Washington University in St.Louis SCHOOL OF MEDICINE

Washington University in St. Louis SCHOOL OF MEDICINE

